CONFIGURATION OF THE ATOMIC PLANES BORDERING A
CRACK IN THE MODIFIED PEIERLS-NABARRO MODEL

M. Kh. Blekherman and V. L. Indenbom

A crack model similar to the Peierls-Nabarro model is used to investigate the dependence
of the configuration of the atomic planes bordering a crack on the law of interplanar inter-
action. The maximum stress at the end of the crack is determined directly from the stress
law, and the configuration of the crack is described by a smooth function satisfying nonlin-
ear integro-differential singular equation (1.3). A semi~inverse method of solving this
equation is proposed. The configurations of the atomic planes bordering the crack are con-
structed for a series of laws of interplanar interaction.

A fundamental problem of modern fracture mechanics is the analysis of the mechanisms of crack
initiation and growth and the related problems of the interaction of cracks with dislocations, vacancies,
and other structural defects. It is known that a crack is a powerful stress raiser; accordingly, in solving
the above problems it is necessary to take into account the properties of the local elastic fields at the tip
of the crack. The determination of these fields reduces to the problem of the shape of the crack tip.

At the microscopic level the question of crack shape is equivalent to the question of the configura-
tion of the atomic planes bordering the crack [1]. A microscopic crack is usually defined as a segment on
which the atomic planes are separated by a distance such that the interaction between them is essentially
nonlinear. Moreover, a macroscopic crack is characterized by the presence of a segment on which this
distance is so great that there is practically no interaction.

If the configuration of the atomic planes has been determined experimentally, then, employing the
method used in [2], it is possible to solve the inverse problem, i.e., from the given configuration recon-
struct the law of interaction of the atomic planes bordering the crack. Our intention is to investigate the
direct problem, i.e., the problem of finding the configuration of the atomic planes bordering a crack from
a given law of interplanar interaction.

The solution of this problem is complicated by the following factors: 1) geometric nonlinearity (fin-
ite strains), 2) nonlinearity of the stress law oj; = ojj(eks), 3) the discreteness of real media.

In what follows we examine a certain special crack model {2] differing from that usually employed in
the linear theory of elasticity.

1. If it is assumed that all the nonlinear effects are localized in a thin boundary layer surrounding
the crack, then the body may be represented as two linear-elastic half-spaces separated in the eduilibrium
position by an interatomic distance a and interacting according to a certain nonlinear stress law oy =
a4(u/a), where ¢y is the normal component of the stress tensor, and u the relative normal displacement of
the boundaries of the half-space.

Here the stress law is treated as the law of interaction of the atomic planes; accordingly, at small
displacements Hooke's law must be satisfied, i.e.,

[aTdu_ S1 (%)Juﬂ, = —aE; (Eis' Young's modulus) . (1.1
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The area bounded by the stress-law graph is numerically equal to the work done in separating the
atomic planes, i.e., to twice the surface energy density v; therefore the stress law should also satisfy the
condition

[e2]

(ov(wiaydu=2r. (1.2)

0

If the normal displacement u,(x}, caused, for example, by internal stresses or the introduction of a
wedge between the half-spaces, is given on part of the surface of the half-spaces, we can examine the
problem of finding the displacements on the rest of the surface, i.e., the problem of the configuration of
the crack tip.

The equilibrium equation of the crack has the form

o= o(2) (= | 40F). @

Here H is the Hilbert transform operator, D = 1/4E for plane stress, D = E/4(1 — v for plane strain,
and v is Poisson's ratio. By g(u(x)/a) we understand the total normal stresq plotted as a function of u(x)/a.

Introducing the dimensionless stress g, we write Eq. (1.3) in the form:

ni-o(f) (). 4

Entov and Saljanik [3], having examined the problem with a piecewise-linear stress law in a similar
formulation, arrived at an analogous crack model.

2. The model in question is similar to that employed in Peierls-Nabarro dislocation theory [4], We
will consider a body containing an edge dislocation with Burgers vector by = B (Fig. 1). According to
Peierls, sucha body may be represented inthe form of two linear-elastic half-spaces, the interface coincid-
ing with the plane x = 0. If one half-plane slips relative to the other, the shear stress T at the edges of the
half-spaces must be a periodic function in the tangential displacement of the half-spaces v.

In the Peierls-Nabarro model the equilibrium equation coincides (except for the coordinate nota-
tion) with Eq. (1.3) if ¢ on the right is replaced by T and u in the integrand by v. As the stress law Peierls
selected the function

T = — GDsin (Rv) (G, R = const),

In this case the equilibrium equation admits the effective solution
2
?=g arc bg (GRz) .

The Peierls solution corresponds to very narrow dislocations; in order to simulate broader disloca-
tions it is possible to employ the generalization of the Peierls solution proposed by Forman, Dzhesuon,
and Wood [4]. The modified Peierls-Nabarro model can be used to analyze the shape of the atomic planes
bordering the crack. In this case the cut must be taken along the plane y =0 (Fig. 1) and the tangential
rather than the normal component of the stress tensor must be considered. The atomic planes m-m and

n-n play the part of half-space boundaries. Thus, we arrive at the crack model considered above.

As may be seen from Fig. 1, the relative normal displacement of the half-space boundaries (i.e.
the planes m-m and n-n) must satlsfy the condition

95



v u (—o0) = 0, u(e0) = B. 2.1

z For the final formulation of the problem, apart from the law of interaction of
\:ﬂ of the half-spaces, we must specify the law of interaction between the half-spaces
and the wedge.

Fig. 1 However, it is easy to show that the surface energy of the crack, which can be
written in the form

oo U (X)
I'= S S cdudx -

—ca 0

does not depend on the laws of interplanar interaction and interaction between the half-spaces and the
wedge and is equal to DB%/2m.

In order to solve the problem of the configuration of the tip of a macroscopic crack it is sufficient to
approximate the stresses created by the wedge at the surface of the half-spaces, while satisfying the fol-
lowing conditions: the resultant force acting on the half-space must be equal to zero and, moreover, the
effects associated with the interaction of the half-spaces with each other and with the wedge must be well
separated, i.e., the configuration of the crack in the neighborhood of the wedge should not affect the con-
figuration in the region of nonlinear interaction of the half-spaces. The second condition is characteristic
of macroscopic cracks and is closely associated with the condition of autonomy of the crack tip [5]. From
the second condition it follows that in the region of nonlinear interaction of the half-spaces the function
g{u/a) coincides with the law of interplanar interaction oy(u/a).

In particular, it may be assumed that the total stress ¢(x) (in what follows o(u)/a) and g(x), like
g(u(x)/a) and g(x), are understood to represent the same function) is an odd function relative to the co-
ordinate origin, which is so selected that u(0) = 1/ZB. (In this case the coordinate system in Fig. 1 must be
shifted to the left.) Given this choice of ¢(x) the first condition is automatically satisfied; the satisfaction
of the second condition will be verified after the solution has been found.

We could have tried to extend the analogy between the model in question and the Peierls-Nabarro
model and use the solution of Forman, Dzhesuon, and Wood to analyze the configuration of the atomic
planes bordering the crack. However, this solution does not possess the interval, characteristic of macro-
cracks, on which there are practically no stresses. Obtaining a series of solutions possessing such an in-
terval is the principal mathematical difficulty of the problem in question.

3. In order to overcome this difficulty we will employ a semi-inverse method based on the integral
representation of the solution of Eq. (1.4) for a right side of arbitrary form. As the basis of this solution
we will take the linear-elastic solution of the crack problem.

Tn the approximation of the theory of elasticity the crack is regarded as a mathematical cut, whose
edges are free of stresses. In what follows we shall require the solution of the problem of a crack gener-
ated by an edge dislocation with Burgers vector by = B, which is equivalent to the insertion of a semi-in-
finite wedge of width B. Let the crack be located in the plane z =0 between the straight linesx=—t and x =
t. Then the equilibrium equation of the crack can be written in the form

t

i du/dE ;.

< S_——E_xda-ww 3.1
-

Since the edges of the crack are free of stresses, on the right side of Eq. (3.1) we must set g(x) =0
at |x] <t. The boundary conditions of Eq. (3.1) are

w(—8=0u®=B. (3.2)
The solution of homogeneous equation (3.1) with conditions (3.2) has the form [6]

du B B
J;—_—.Remﬁ, g(a:)—-—-Ren Vo—g sgn z ’ (3.3)
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where Re denotes the real part of the complex-valued function.
J
The length of the crack L = 2t can be determined from energy
il considerations [7]:
218 DB?
L :m . (34)

008

¥ Equations (3.3) show that in the approximation of the theory of
2 L elasticity the tip of the crack acquires a parabolic shape, and the

stresses in the neighborhood of the tip become infinite, which indi-
Fig. 2 cates the physical incorrectness of the linear-elastic approximation.
Attempts to remove the singularity in the solution of the linear theory
of elasticity have compelled a number of authors to take the forces of interaction between the crack edges
into account [5, 8-10].

In the model considered the singularity problem is automatically eliminated: the atomic planes are
always smoothly joined, the smoothness of the law of interplanar interaction ensuring the corresponding
smoothness of the derivative of the displacement. It should be noted that in the electron micrograph of a
dislocation crack in a sheet of copper phthalocyanin, presented in [2], the shape of the atomic planes dif-
fers strikingly from the shape expected on the basis of an analysis of solution (3.3): the tip of the crack is
concave rather than convex, and, moreover, the atomic planes have positive curvature over almost the
entire length of the crack, the sign of the curvature changing only near the wedge.

4. We now turn to the solution of Eq. (1.4). If we multiply the right side of the first of Eqgs. (3.3) by
some function f(t) and integrate with respect to t from |x| to ty, the function obtained will also give the so-
lution of the crack-equilibrium problem; however, the stress g(x) at the surface of the crack will, general -
ly speaking, be nonzero. If f(t) = 0 on the interval [0,7], (I < t;), then g(x) will also be equal to zero on that
interval; if f(t) is small on [0,/], then g(x) will also be small. In the case in question ty == should be taken
as the upper limit of integration.

Formally, we can proceed as follows. We introduce the complex-valued function of real argument

D (z) = ¢ (2) + & () {4.1)
1x]

v@ = | Oy = — § 0% ne . (4.2)
|§{ ViE— S Ve -1

The function f(t) is assumed to be such that integrals (4.2) exist everywhere. Using (3.1) and (3.3),
we can easily show that

H®, (z) = — iy () . (4.3)

It can be shown that for any continuous function w (x) decreasing at infinity not more slowly than
Nx~%a > 0), Nis an arbitrary constant) there is a pair of functions F(t) and f ~(t) such that

% (2) = @° @)+~ @) (9 (2) + = (@) = Ot (2)), (4.4)

In fact, we treat expressions (4.2) as equations in the function f ). By virtue of the evenness and
oddness of ¢(x) and ¢(x), respectively, it is sufficient to obtain the solution at x = 0. By means of simple
substitutions these equations are reduced to Abel integral equations [6], after which the solution is written
in explicit form,

00 ¢
I/ de /dx 2 dp/dx
fy=— L\ _9R/ET 4y =—= dr .
1@ “tS 2LE a1 Svt«_ﬂ : (4.5)
We set
@ =y b (@) Fu (—2)], (@) =y b (2) — % (— 2)] ; (4.6)
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" now the unknown functions f*(t) and f~(t) are found from the first and

j % second of Eqs. (4.5), respectively. [The proof is easily extended to

s s AN P the case of discontinuous « (x)].

1—//#-‘/00—!/—5’#' / ‘ We set

IR A Y du/dz = ¢* (z) + v~ (2)- (4.7)
Fig. 3 We can represent in this form an arbitrary function decreasing

at infinity not more slowly than a power function with arbitrary nega-
tive exponent.

From (1.4) by virtue of (4.1) and (4.3) there follows
g @ =9 () — 9 (2) . (4.8)

Thus, an arbitrary (in the above-mentioned class) solution of Eq. (1.4) can be represented in the
form (4.7), (4.8). In what follows these equations are regarded as the parametric form of the stress law.

The above-mentioned Peierls solution is obtained from (4.7) and (4.8) with

2GRt

= (G2R 2 1)3/2 ’

f‘(t):O .

It is also easy to obtain the representation for the Forman, Dzhesuon, and Wood solution.

We now return to the problem in question. In order to obtain a solution containing only odd g(x), we
set f7(t) = 0. We transform the boundary conditions, assuming that f(t) is integrable on the positive semi-
axis. Condition (2.1) is written in the form

(raya=L. (4.9)

The analogous integral of f ~(t) would vanish owing to the requirement that the resultant force acting
on the body be zero.

Tt can be shown that in order to satisfy condition (1.1) it is sufficient that at large t
BDa 1 1
Frity= 252 L o(—tz—> . (4.10)

Condition (1.2) is written in the form
1 o‘o 9
Vk @)\ 1 @) 7 (etyatar = 20 4.11)
[} 0

where K(k) is a complete elliptic integral of the first kind, k' =+v1 — k? is the complementary modulus.
Writing condition (1.2) in the form (4.11) is legitimate only for macroscopic cracks.

5. By assigning various functions f*(t), we can obtain a series of solutions of Eq. (1.4) correspond-
ing to different stress laws. For the purpose of a specific calculation the following values of the param-~
eters were selected:

D=E/4(1 =), vy=YYypa, B/a=20, v=03
where pu is the shear modulus.

*With this choice of f1(t) a difficulty arises in connection with the fact that at zero fH(t) should vanish to-
gether with its derivative. If the parameter b is selected so that exp(—mzbz) <« 1, then from the function
F*(t), almost without distorting its form, we can subtract a correction of the type Ay/(t® + 1) + Ant/(t* +1),
where A; and A, are selected so as to satisfy the condition FT0) =0, [FH(t))e= = 0.
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The function f¥(t) was taken in the form*

24

gl/: / f+(t)——ﬁ(b_t) 4, ex [_mz(b—t)2]+1‘}(t—b) Age?
¥ - Ao OXp e

24 v where ¢ (1) is the Heaviside unit function.

In this case conditions (4.9) and (4.10) are satisfied analytically, condition

; ‘ A (4.11) was satisfied and integrals (4.2) evaluated numerically on a computer.
ez a4 After conditions (4.9), (4.10), (4.11) have been satisfied, only the parameter
b remains free. A series of configurations of the atomic planes bordering the
Fig. 4 crack corresponding to the stress laws plotted in Fig. 2 is presented in Fig. 3.

The dashed line represents the configuration corresponding to fH(t) = S'8(t — 8),

(6(t) is the Dirac delta function). The values of S and s were determined from

conditions (1.2) and (2.1). Naturally, for this choice of f¥(t) condition (1.1) cannot
be satisfied.

We introduce the effective crack length L*, that is, twice the distance from the coord inate origin to
the point of inflection on the graph of the relative normal displacement u(x). It follows from Fig. 3 that L*
is almost independent of the form of the stress law and coincides with the equilibrium crack length L de-
termined in the continuous linear-elastic approximation. This result is perfectly natural: the problem of
determining the crack length is essentially a one-parameter problem (the single parameter is the surface
energy density v); therefore, when correctly defined, the equilibrium crack length should not depend on
the model employed. It is also clear from Fig. 3 that the crack configurations corresponding to different
stress laws do not differ significantly on a large part of the effective length, the principal difference
being observed in the neighborhood of the point x = —1/2L*. This indicates that the specific form of the
stress law is reflected only in the configuration of the tip of the macrocrack, which confirms the satisfac-
tion of the condition of nondependence of the configuration of the tip of the macrocrack on the nature of the
interaction in the neighborhood of the wedge.

As the inflection characteristic it is possible to select the maximum value of the derivative of the
displacement uy'. In Fig. 4 we have plotted the dependence of ux ' on the maximum value of the
stress g* for the given series of stress laws. As the piecewise-linear stress law is approached, ux'
may be expected to increase without bound, since in this case a logarithmic singularity should appear in
u'(x).

In conclusion it should be noted that the representation of the solution of Eq. (1.3) can be used to
analyze the shape of microscopic cracks and also to study the motion of broad dislocations.

The authors thank Yu. N. Rabotnov for his interest in their work and A. A. Shtol'berg for assisting
with the numerical calculations.
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